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Abstract - We studied the peristaltic flow of an incompressible, electrically conducting Williamson fluid in a symmetric planner channel 
through a porous medium with heat and mass transfer under the influence of inclined magnetic field of an angle of inclination α . Hall 
effects, viscous dissipation and Joule heating are taken into consideration.  The non linear partial differential equations that govern that 
model were simplified under assumptions of long wavelength and low Reynolds number. Then a regular perturbation technique in the 
Weissenberg number was applied to obtain a closed form expressions for stream function, axial pressure gradient, temperature and 
concentration profiles. The influence of various embedded parameters on the flow were plotted through a set of graphs and discussed. 
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Nomenclature:  
 
T  Temperature of the fluid,  
C  Concentration of the fluid, 

0T  Temperature at 0z =  

1T  Temperature at z h=  

0C  Concentration at 0z =  

1C  Concentration at z h=  
V  Velocity vector of the fluid,  
J  the current density,  
B  the magnetic flux density,  
S  the extra stress tensor representing the stresses result-

ing from a relative motion within the fluid of a Wil-
liamson fluid.  

1K   Permeability of the porous medium,  
ρ   Density of the fluid,  
P   Pressure,  

pc      The specific heat at constant pressure,  

σ      Electric conductivity,  
 a            Mean half width of the channel, 
 b            Wave amplitude,  
λ           Wave length,  

 c            velocity of propagation  
 t            Time 

mT          Mean temperature,  

Tk          Thermal diffusion ratio,  
D           The coefficient of mass diffusivity,  
µ           The coefficient of viscosity of the fluid,  
φ   The viscous dissipation factor 
 u the velocity component along the X direction 
 w the velocity component along the Z direction  
µ∞  The infinite shear rate viscosity,  

0µ  Zero shear rate viscosity,  
Γ  Time constant 
∏  The second invariant shear-rate tensor 

en           The mass of the electron 
e            The charge of the electron 
β           The hall factor 
Re         Reynolds number,  

2M         Hartmann number, 
D           Permeability parameter,  
Sr   Soret parameter,  
Pr   Prandtl number,  
Sc   Schimdt number,  
Ec   Eckert number,  
We   Weissenberg number 
 Br Brinkman number 
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1 INTRODUCTION                                                                     
he Peristaltic transport is a form of fluid transport via 
travelling waves imposed on the walls of a distensible 
fluid, such phenomenon has been documented and mas-

tered through numerous investigations see [1–9]. In physiolo-
gy, peristaltic mechanism is a neuromuscular property of any 
smooth muscle structure which transports bio fluids by their 
propulsive movement, such as transporting urine from kidney 
to bladder, swallowing of food through esophagus, transport 
of bile in the bile duct and chyme movement in the intestine. 
In industrial applications this mechanism can be used in 
transporting corrosive fluids, sanitary fluids and slurries to 
avoid contamination with the outer environment. Due to the 
extensive applications of non-Newtonian fluids in industrial 
process and in physiological studies, they have gained a con-
siderable attention in the last few decades. Because of the dif-
ferent rheological properties of non-Newtonian fluids, several 
constitutive equations have been suggested to express such 
fluids, the computation of such equations presents serious 
challenges to the researchers in the field, since these equations 
leads to a set of partial differential equations which are much 
more non linear and of higher order than the classical Navier–
Stokes equations. The Williamson fluid model which is a non-
Newtonian fluid that falls into the category of viscoelastic 
shear thinning fluids, represents the behavior of pseudoplastic 
materials whose apparent viscosity or consistency decreases 
instantaneously with increase in rate of shear. Some recent 
investigations for studying peristaltic flow of non Newtonian 
fluids are mentioned in the studies [10–17]. The study of mag-
neto hydro dynamic (MHD) peristaltic flow of a fluid is of 
special interest in certain problems of conductive physiologi-
cal fluids as the influence of magnetic field may be utilized as 
a blood pump in carrying out cardiac operations for the flow 
of blood in arteries with arterial disease like arterial stenosis or 
arteriosclerosis. The usage of the Giant Magneto Resistive 
(GMR) technology which is a device that applies a magnetic 
field with a very sensitive sensor, accurately detect the small 
movements of an object within a magnetic field. This technol-
ogy has the potential to facilitate the study of peristaltic activi-
ty in some tubular structures such as a bowel, fallopian tube 
and perhaps even in the vas deferens. Hayat et al. [17] have 
analyzed the peristaltic transport of a Jeffrey fluid under ef-
fects of an endoscope and applied magnetic field. Mekheimer 
[18] has examined the peristaltic transport of a couple stress 
fluid under influence of an induced magnetic field. Abo-
Eldahab et al. [19] have studied the effects of Hall currents on 
peristaltic transport of a couple stress fluid. Furthermore, the 
effects of porous medium on peristalsis is useful in studying 
some biomedical applications like transport process in lungs, 
kidneys, gallbladder with stones. The first attempt to study 
the peristaltic flow through a porous medium was presented 
by Elsehawy [20]. Elsehawy et al. [21] have studied the peri-
staltic motion of generalized Newtonian fluid through a po-
rous medium. Hayat et al. [22] have investigated the Hall ef-
fects on peristaltic flow of a Maxwell fluid in a porous medi-
um. Abdelmaboud and Mekheimer [23] have discussed the 
peristaltic transport of a second order fluid through a porous 

medium. Dharmenda [24] has investigated the peristaltic he-
modynamic flow of a couple-stress fluid through a porous 
medium with slip effects. Few attempts have been devoted to 
peristaltic flows of non Newtonian fluids in presence of heat 
and mass transfer; such investigations are of great importance, 
which is due to their extensive applications in medical and 
bio-engineering sciences, as it may be relevant in many pro-
cesses in human body, like oxygenation in lungs, hemodialysis 
and nutrients diffuse out of blood. Nadeem and Akbar [25] 
have studied the influence of heat and mass transfer on the 
peristaltic flow of Johnson Segalman fluid in a vertical asym-
metric channel with induced magnetic field, and in an earlier 
study they have discussed the peristaltic flow of radial varying 
magnetic field in an annulus with heat and mass transfer. 
Hayat and Hania [26] have investigated the effects of heat and 
mass transfer on peristaltic flow of Williamson fluid in a non 
uniform channel with slip conditions. Nadeem et al. [27] have 
discussed the influence of heat and mass transfer on the peri-
staltic flow of a third order fluid in a diverging tube. Eldabe 
and Abu-Zied [28] have investigated the wall properties effect 
on peristaltic transport of micropolar fluid in presence of heat 
and mass transfer. Nadeem.S and Safia Akram [30] have pre-
sented a peristaltic flow of a Williamson model in an asym-
metric channel. The governing equations of Williamson model 
in two dimensional peristaltic flow phenomena are construct-
ed under long wave length and low Reynolds number approx-
imations. For large Williamson parameter We, the curves of 
the pressure rise are not linear but for very small We it behave 
like a Newtonian fluid. Abbasi Fahad Munir, Hayat Tasawar 
and Ahmad Bashir [31] discussed the peristaltic transport of 
viscous fluid in an asymmetric channel where the channel 
walls exhibit convective boundary conditions and consider the 
joule heating. Awais.M et al. [32] investigated Magneto hydro 
dynamic peristaltic flow of Jeffery fluid in an asymmetric 
channel where the channel walls satisfy the convective condi-
tions. Hayat and Abbasi [33] gave reports on the effects of ve-
locity and thermal slip parameters on the peristaltic motion of 
variable viscosity and magneto hydro dynamic (MHD) fluid in 
an asymmetric channel. The mathematical model describing 
the slip peristaltic flow of nano fluid was analytically investi-
gated by Abdelhalim Ebaid and Emad H. Aly [34]. Safia 
Akram et al. [35] investigated the peristaltic flow of a Maxwell 
fluid in a porous asymmetric channel through a porous medi-
um. Despite all such challenges, various recent researchers are 
even making their valuable contributions for peristaltic 
transport of non-Newtonian fluids [36-50]. Motivated by the 
facts discussed above, the aim of the present work is to inves-
tigate the hall current effects on the peristaltic flow of an in-
compressible electrically conducting Williamson fluid through 
a porous medium in presence of heat and mass transfer. In 
addition, viscous dissipation, Joule heating and Soret effects 
are taken into consideration. We introduce the basic equations 
that govern the model. We obtain the solution of the problem 
using the regular perturbation technique in terms of small 
Weissenberg number. Discussion of results and conclusion 
was made through a set of plots. 
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2    FORMULATION AND SOLUTION OF THE PROBLEM 
 We consider the peristaltic transport of an incom-
pressible, electrically conducting Williamson fluid in a sym-
metric planner channel through a porous medium with heat 
and mass transfer and under the influence of inclined        
magnetic field of an angle of inclinationα  as shown in the    
Figure 1. Hall effects, viscous dissipation and Joule heating are 
taken into consideration. The basic equations that govern the 
flow of MHD incompressible non-Newtonian fluid through a 
porous medium in presence of heat and mass transfer with the 
effects of viscous dissipation, Joule heating and thermo diffu-
sion are, The continuity equation 

. 0V∇ =                                                                              (1) 
Momentum equation 

1

dV P S J B V
dz K

µρ = −∇ +∇ ⋅ + × −                                (2) 

The heat equation 
2 1

p
dTc k T J J
dz

ρ µφ
σ

= ∇ + + ⋅                                               (3) 

The concentration equation 
2 2T

m

dC DkD C T
dz T

= ∇ + ∇                                                               (4) 

The constitutive equation for the extra stress tensor S is [29], 

( )1
0( )(1 )S µ µ µ Γγ γ−

∞ ∞= + − −                                                       (5) 

and γ  is defined by 

1 1
2 2ij ji

i j

γ γ γ Π= =∑ ∑                                                (6) 

By considering 0µ∞ =  and Γγ  in the constitutive equation 
(5), so we can write  

0 (1 )S µ Γγ γ= − +                       (7) 
In which Eq. (7) reduces to a Newtonian fluid in case 0Γ = . 
  We consider the peristaltic flow of an incompressible, 
electrically conducting Williamson fluid through a porous 
medium in a three dimensional symmetric flexible channel of 
width 2a taking hall current into account. The flow is consid-
ered in the direction of X-axis and Z-axis is taken normal to 
the flow. A sinusoidal wave of amplitude b propagates along 
the channel walls with constant speed c along the direction of 
the X-axis. A strong uniform magnetic field with magnetic flux 
density 0(0, sin ,0)B B α=  is applied normal to the channel. The 
induced magnetic field is neglected by assuming a very small 
magnetic Reynolds number (Re 1)m � , also it is assumed that 
there is no applied or polarization voltage so that the total 
electric field 0E = . The geometry of the wall surface is de-
scribed by 

2( , ) cos ( )H X t a b X ctπ
λ

 = ± ± − 
 

                                              (8) 

 
 

 
 

Fig. 1: Physical configuration of the problem 
 

The generalized Ohm’s law can be written as  
( )J E V B J Bσ β= + × − ×                                                                (9) 

 Where 1/ en eβ =  is the hall factor,  
 Eq. (9) can be solved in J to yield the Lorentz force 
vector in the form 

0
2 2
sin ( sin ) ( sin )

1 sin
BJ B Um W i U Wm k
m

σ α α α
α
 × = − − + + +

       (10) 

 Where, U and W are the X and Z components of the 
velocity vector, and 0m Bσ β=  is hall parameter.  
 
Using the transformations 

, , , , ( ) ( , )x X ct y Y u U c w W p x P X t= − = = − = =                         (11) 
 The unsteady flow in the fixed frame (X, Z) appears 
steady in the wave frame (x, z) in which are the velocity com-
ponents in the wave frame.  
 Introducing non-dimensional the following non-
dimensional quantities 

2

* , * , * , * ,

* , * , * ,

X Z u wX Z u w
c c

c a a pt t p
c c

λ λ

γ γ
λ µ λ

= = = =

= = = 
 

                   0 0

1 0 1 0
* , , * , *H T T C Ch C

ca a T T C C
ψψ θ − −

= = = =
− −

             (12) 

  
 Making use of non-dimensional variables, the equa-
tions (2)-(4) reduces with respected to the wave frame, the 
governing equations in terms of the stream function ψ  are 
(dropping asterisks),  
 

 where  *u
z
ψ∂

=
∂

 and *w
x
ψδ ∂

= −
∂

 . 
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2

2Re 2 (1 )p We
z x x z z x x x z
ψ ψ ψ ψδ δ γ

  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ − = − + + +     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    
  

                
2 2 2 3 2 2

2
2 2 2 2 2 2

sin sin 1(1 ) 1
1 sin 1 sin
mM MWe

z x D zz x m m
ψ ψ α ψ α ψγ δ δ

α α

      ∂ ∂ ∂ ∂ ∂  + − + − + +        ∂ ∂ ∂∂ ∂ + +           
                                                               (13) 

 
2 2

3 2 2
2 2Re (1 )p We

z x x z x z x z x
ψ ψ ψ ψ ψδ δ γ δ

   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   − − = − + + − +      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     
  

              
2 2 3 2 2

2 2
2 2 2 2
sin sin 12 (1 ) 1

1 sin 1 sin
mM MWe

z x z z D xm m
ψ α ψ α ψδ γ δ δ

δα α

     ∂ ∂ ∂ ∂ − + − + − +       ∂ ∂ ∂ ∂ ∂+ +         
                                                                      (14) 

 
2 2

2
2 2

1Re (1 )
Pr

Ec We
z x x z x z
ψ θ ψ θ θ θδ δ γ

 ∂ ∂ ∂ ∂ ∂ ∂ − = + + +    ∂ ∂ ∂ ∂ ∂ ∂   
  

                
2 2 2 22 2 2 2 2

2 2 2
2 2 2 2

sin4 1
1 sin

MEc
x z x zz x m
ψ ψ ψ α ψ ψδ δ δ

α

      ∂ ∂ ∂ ∂ ∂      + − + + +           ∂ ∂ ∂ ∂∂ ∂ +           

                                                                      (15) 

 
2 2 2 2

2 2
2 2 2 2

1Re C C C C Sr
z x x z Sc x z x z
ψ ψ θ θδ δ δ

   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ − = + + +        ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     
                                                                                      (16) 

 
Where,   

 

1/22 22 2 2
2 2

2 24
x z z x
ψ ψ ψγ δ δ

    ∂ ∂ ∂ = + −       ∂ ∂ ∂ ∂    

 ,  1Re cdρ
µ

=  is the Reynolds number,  
2

2 0
2

B aM σ
µ

=  is the Hartmann number,  

1
2

KD
a

=  is the permeability parameter, 1 0

1 0

( )
( )m

Dk T TSr
T C C
ρ
µ

−
=

−
 is the Soret parameter, Pr

k
ρνξ

=  is the Prandtl number,  Sc
D
µ
ρ

=  is 

the Schimdt number,  
2

1 0( )
cEc

T Tξ
=

−
 is the Eckert number,  cWe

a
Γ

=  is the Weissenberg number and  PrBr Ec=  is the Brink-

man number. 

And under the assumptions of long wavelength 1δ � and low Reynolds number, we obtain  
2 2 2 2

2 2 2 2
sin 10 1 1

1 sin
p MWe
x z D zz z m

ψ ψ α ψ
α

    ∂ ∂ ∂ ∂ ∂  = − + + − + +      ∂ ∂ ∂∂ ∂ +       
                                                                        (17) 

0 p
z
∂

= −
∂

                                                               (18) 

2 3 22 2 2 2 2

2 2 2 2 2
1 sin0 1
Pr 1 sin

MEc We Ec
zz z z m

θ ψ ψ α ψ
α

    ∂ ∂ ∂ ∂  = + + + +          ∂∂ ∂ ∂ +      

                                                                                      (19) 

2 2

2 2
10 C Sr
Sc z z

θ∂ ∂
= +

∂ ∂
      .                                                        (20) 

 
Eq. (18) implies that ( )p p z≠ . And we can write the equation (17) in the form 

2 2 2 2 2

2 2 2 2 2
sin 10 1

1 sin
MWe

Dz z z m
ψ ψ α ψ

α

    ∂ ∂ ∂ = + − +       ∂ ∂ ∂ +    
                                                                                        (21) 
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 The non-dimensional boundary conditions in the 
wave frame are given as 

2

20, 0, 0, 0C
z
ψψ θ∂

= = = =
∂

  at  0z =                                            (22) 

, 1, 1, 1q C
z
ψψ θ∂

= = − = =
∂

  at   z h=                                           (23) 

Where,  ( ) 1 cos(2 ),h x xε π= +  / (0 1)b aε ε= < <   is the ampli-
tude ratio and q  is the dimensionless time mean flow rate in 
the wave frame. It is related to the dimensionless time mean 
flow rate Q in the laboratory frame through the relation 

1Q q= + .  
 The non dimensional expression of pressure rise P∆  
per wave length is 

1

0

dpP dx
dx

∆ = ∫                                                              (24) 

 Solving the equations (19), (20) and (21) with the 
boundary conditions using a regular perturbation technique in 
terms of the small parameter as, 
 2

0 1 2We Weψ ψ ψ ψ= + + + ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅                                             (25) 
2

0 1 2q q Weq We q= + + + ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅                                             (26) 

20 1 2dp dp dp dpWe We
dx dx dx dx

= + + + ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅                                      (27) 

2
0 1 2We Weθ θ θ θ= + + + ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅                                             (28) 

2
0 1 2C C WeC We C= + + + ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅                                             (29) 

 Substituting the equations (25) - (29) into equations 
(19) - (21) and then comparing the coefficients of like powers 
of We up to the first order and neglecting powers of order 2 
and higher, we obtain 
Zeroth order: 

2 2 2 2
0

2 2 2 2
sin 10

1 sin
M

Dz m z
α ψ
α

  ∂ ∂
= − − +   ∂ + ∂   

                                     (30) 

2 22 2 2 2
0 0

2 2 2 2
1 sin0 1
Pr 1 sin

MEc Ec
zz z m

θ ψ α ψ
α

 ∂ ∂ ∂ = + + +     ∂∂ ∂ +   
             (31) 

2 2
0 0

2 2
10 C Sr
Sc z z

θ∂ ∂
= +

∂ ∂
                                                            (32) 

Corresponding boundary conditions are 
2

0
0 0 020, 0, 0, 0C

z
ψψ θ∂

= = = =
∂

    at   0z =                              (33) 

0
0 0 0 0, 1, 1, 1q C

z
ψψ θ∂

= = − = =
∂

   at   z h=                              (34) 

First order: 
24 2 2 2 2 2

1 1 1
4 2 2 2 2 2

sin 10
1 sin

M
Dz m z z z

ψ α ψ ψ
α

   ∂ ∂ ∂ ∂
= − + +      ∂ + ∂ ∂ ∂   

                  (35) 

32 2 2 2
1 0 1 0

2 2 2 2
10 2
Pr

Ec
z z z z
θ ψ ψ ψ  ∂ ∂ ∂ ∂ = + + +   ∂ ∂ ∂ ∂  

 

               
2 2

0 1
2 2
sin 2 1

1 sin
MEc

z zm
α ψ ψ
α
 ∂ ∂ +  ∂ ∂+   

                              (36) 

2 2
1 1

2 2
10 C Sr
Sc z z

θ∂ ∂
= +

∂ ∂
                               (37) 

Corresponding boundary conditions are 
2

1
1 1 120, 0, 0, 0C

z
ψψ θ∂

= = = =
∂

      at   0z =                              (38) 

1
1 1 1 1, 0, 0, 0q C

z
ψψ θ∂

= = = =
∂

      at   z h=                              (39) 

 Solving the above resulting zeroth and first order 
equations using the relavent boundary conditions, we ob-
tained the exact forms for the stream function ψ , the longitu-
dinal velocity / zψ∂ ∂ , the pressure gradient /dp dx , the temper-
ature distribution θ  and the concentration distribution C .  
The expressions are mentioned in the appendix.  

4 RESULTS AND DISCUSSION 
 We have presented a set of Figures (2–9), that describe 
qualitatively the effects of various parameters of interest on 
flow quantities such as the axial velocity u, pressure rise per 
wave length P∆ , axial pressure gradient /dp dx , temperature 
distribution θ   and concentration distribution C .   
 Figures 2(a-e) display the variation of axial pressure 
gradient /dp dx  with x for different values of permeability 
parameter D, Hartman number M, an angle of inclination α , 
hall parameter m and the Weissenberg number We. The       
following results can be observed from these figures. The 
magnitude of the pressure gradient decreases with the        
increase in D, m, We and α , while it increases with the        
increase in M. It is also observed that the maximum pressure 
gradient occurs at the narrow part of the channel. The       

pressure rise per wavelength P∆  against flow rate Q for dif-
ferent values of D, m, M, α  and We are shown in Figures         
3 (a-d). It is observed from these figures that, in the pumping 
region ( 0)P∆ >  the pumping rate decreases by increasing D, m 
and We, while in the co-pumping region ( 0)P∆ < , the pump-
ing rate decreases by increasing M or α  and increases by     
increasing D, m and We. For the free pumping case ( 0)P∆ = , 
there are no noticeable differences observed. The variations of 
temperature distribution θ   with for several values of M, α , 
We, m and the Brinkman number Br are plotted in Figures        
4 (a-e). These figures depict an increase in the temperature 
field when M or α  and Br increases and a decrease in the 
temperature field when We and m increases. It is clear from the 
last term in equation (19) that an increase in the hall parameter 
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m will result in a decrease of the Joule dissipation which is 
proportional to 21 /1 m+  and hence a decrease in the tempera-
ture distribution. Whereas an increase in the Brinkman num-
ber Br means a more energy is stored in the fluid due to the 
frictional forces and thus an increase in the temperature dis-
tribution. Figures 5 (a-f) represent the concentration distribu-
tion C  for different variations of M, α , m, We, the Soret num-
ber Sr and the amplitude ratio ε . It can be noticed from these 
figures that the concentration distribution decreases by in-
creasing M, α , Sr and ε , while it increases when m and We 
increases. Figures 6 (a-f) are prepared to study the role of M, 
α , m, We, ε and D on the axial velocity u. It is obvious from 
Figures 6(a), 6(e) and 6(f) that an increase in m, D and ε ,  the 
magnitude of the velocity increases at the center of the channel 
whereas it decreases near the channel walls.  From Figures 
6(b), 6(c) and 6(d) it is observed that M, α  and We has an op-
posite behaviour to that of m and We. The opposite effects of m 
and M on the longitudinal velocity u is quite opposite in ac-
cordance with physical argument, since the effective conduc-
tivity σ  of the fluid is decreased by increasing m; resulting in 
less resistivity of the Lorentz force and therefore an increase in 
the fluid velocity at the center of the channel, While increasing 
M results in an increase in the damping force that will         
decrease the fluid velocity at the center of the channel. We 
would like to refer to a conclusion we have reached upon re-
solving our problem after neglecting the Joule heating effect in 
the heat equation and then examining the effects of the Hart-
man number M and the hall parameter m on the temperature 
and the concentration distributions through plots.  From     
Figures 7 (a-d), we found out from Figures 7(a) and 7(b), that 
the temperature distribution decreases by an increase in M 
and increases by an increase in m. Figures 7(c) and 7(d), show 
that the concentration distribution decreases by an increase in 
m and increases by an increase in M. Therefore, in our present 
model and from the above discussion it is clear that, when 
neglecting the Joule heating term in the heat equation, the 
roles of M and m on the temperature and concentration distri-
butions are reversed. Figures (8-9) represents the behaviour of 
streamlines for the different values of We and α . Figures 8 (a) 
and 8 (b) examine that size of trapped bolus decreases when 
We  increases. Figures 9 (a) and 9 (b) shown that the size of 
trapped bolus increases with an increase in an angle of an in-
clination α . 

4   CONCLUSION 
 We studied the Hall effects on peristaltic transport of a Wil-
liamson fluid in a symmetric channel through a porous medium with 
heat and mass transfer and under the influence of inclined magnetic 
field of an angle of inclinationα , viscous dissipation, Joule heating 
and thermo diffusion effects are taken into consideration. The govern-
ing three dimensional equations have been simplified under the as-

sumptions of low Reynolds number and long wavelength. The simpli-
fied equations are solved analytically using regular perturbation 
technique. The main observations have been pointed out as follows. 
(1). The axial pressure gradient decreases with an increase in m, D and 
α  while it decreases with an increase in M and We. (2). The tempera-
ture field increases with an increase in M andα . It decreases with an 
increase in m and We. (3). The concentration field decreases with an 
increase in M or α . It increases with an increase in m and We. (4). The 
effect of M or α and We on the longitudinal velocity are quite oppo-
site to that of m, ε   and D. (5). In the absence of the Joule heating 
effect the roles of M, α  and m on the temperature and concentration 
distributions are reversed. So it is important not to neglect the Joule 
heating effect in the temperature equation in order to obtain more 
accurate results. (6). The size of trapped bolus decreases when We 
increases where as it increases with an increase in α . 
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Fig. 2:  The variation of pressure gradient /dp dx against D, m, We, M and α with 0.2, 1Qε = = −  
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Fig. 3: The variation of Pressure rise P∆ against D, We, m, M and α  with 0.2ε =  
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Fig. 4: Temperature distribution θ  with M, α , m, Br and We with                                                      

0 10.8, 0.2, 0.05, 0.05, 0D q q xε= = = = =  
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Fig. 5: Concentration C with M, α , m, We, Sr and ε  with 

 0 10.8, 2, 0.05, 0.05, 0D Br q q x= = = = =  
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Fig. 6. The velocity profiles for m, M, α , We and D with  

0 10.2, 1.5, 2, 0.08, 0.05, 0.05, 0, 1.5, 1.5Q Br We q q x Sc Srε = = = = = = = = =  
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Fig. 7: The temperature and Concentration with m and M with 
0 10.8, 2, 0.2, 0.08, 0.05, 0.05, 1.5, 1.5, 0D Br We q q Sr Sc xε= = = = = = = = =  
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Fig. 8. The stream lines (a). We = 0.05 (b). We = 0.08  

0 10.2, 1.5, 2, 2, 0.8, 0.05, 0.05, 0, 1.5, 1.5, / 4Q M Br D q q x Sc Srε α π= = = = = = = = = = =  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 9. The stream lines (a). / 4α π=  (b). / 3α π=  
 0 10.2, 1.5, 2, 2, 0.8, 0.05, 0.05, 0, 1.5, 1.5, 0.05Q Br M D q q x Sc Sr Weε = = = = = = = = = = =  
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